top of page
nhirasawa

Proteoglycan Errors in Embryonic Bone Development: A Closer Look 

The critical role of proteoglycans in embryonic bone development is highlighted when genetic mutations are linked to skeletal disorders. Understanding the genetic basis of these disorders enhances our insight into critical design features of biomaterials for skeletal repair. One promising avenue is the use of carbohydrate-based scaffolds for tissue engineering. These materials, including Osteo-PTM BGS, structurally mimic GAGs and have shown potential for bone regeneration. For example, a novel hyper-crosslinked carbohydrate polymer demonstrated efficacy in repairing bone defects in vivo. To learn more, refer to “Hyper-Crosslinked Carbohydrate Polymer for Repair of Critical-Sized Bone Defects” (Koleva et al., 2019)





Proteoglycans are vital macromolecules that play a crucial role in embryonic bone development. These complex molecules consist of a core protein with covalently attached glycosaminoglycan (GAG) side chains. Proper synthesis and modification of proteoglycans are essential for normal skeletal formation. However, mutations in the genes responsible for these processes can severely disrupt bone development, leading to skeletal abnormalities such as chondrodysplasias and connective tissue diseases (Sao & Risbud, 2024; Taylan & Mäkitie, 2016)


The Role of GAG Sulfation in Skeletal Development 

GAG sulfation, a critical modification process catalyzed by sulfotransferases within the Golgi apparatus, is essential for the proper function of all GAGs except hyaluronic acid. Disruptions in this sulfation process can significantly alter the physiological roles of proteoglycans, particularly in developing tissues. Such disruptions have been linked to various skeletal disorders, including chondrodystrophies, characterized by abnormal cartilage and bone development.  Mutations in genes related to sulfation or ion transport can lead to a range of skeletal disorders, as summarized in Table 1 (Sao & Risbud, 2024; Taylan & Mäkitie, 2016)


Table 1: Gene Mutations and Associated Skeletal Disorders 

Mutated Genes 

Disease/ Disorders 

PAPSS2, CHST3  

Skeletal dysplasia  

IMPAD1, SLC35B2, CHST11  

Chondrodysplasia 

CHST11  

Brachydactyly  

CHSY1 

Temtamy preaxial brachydactyly syndrome 

B4GALT7, CHST14, DSE 

Ehlers-Danlos syndrome 

SDC4 

Intervertebral Disc degeneration 

XYLT1 

Desbuquois dysplasia type 2 

XYLT2 

Spondylo-ocular syndrome 

FAM20B 

Neonatal short limb dysplasia 

EXT1 and EXT2 

Hereditary multiple exostosis 

B3GAT3 

Larsen-like syndrome, Gerodermia osteodysplastica-like phenotype 

EXTL3 

Skeletal dysplasia, Hereditary multiple exostosis 

SLC35D1 

Schneckenbecken dysplasia 

SLC26A2 

Chondrodysplasias, Achondrogenesis, Diastrophic dysplasia, Recessive multiple epiphyseal dysplasia 

GORAB 

Gerodermia osteodysplastica 

 

Proteoglycans and Intervertebral Disc Disease 

Proteoglycans are also key players in maintaining the structural integrity of the intervertebral discs, particularly through their role in collagen fibril organization and tissue hydration.  In individuals with intervertebral disc disease, elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF- α), interleukin (IL)-6, IL-1β can exacerbate disc degeneration. This process is mediated by the upregulation of the SDC4 gene which encodes for syndecan-4, a proteoglycan involved in matrix regulation. Activation of SDC4 triggers proteolytic cascades that lead to the disintegration of the disc extracellular matrix, primarily through enzymes like ADAMTS-5 and matrix metalloproteinases (Sao & Risbud, 2024)


Consequences of Faulty Proteoglycan Synthesis 

Genetic mutations affecting each step of proteoglycan biosynthesis – from the initial synthesis of the protein core to elongation and sulfation of GAG chains – can lead to a wide array of disorders. Table 2 outlines some of the key genetic disorders associated with defects in proteoglycan synthesis (Chan et al., 2018; Paganini et al., 2019; Sao & Risbud, 2024; Wen et al., 2014)


Table 2: Genetic Disorders Linked to Proteoglycan Biosynthesis Errors 

 Gene 

Normal Function 

Dysfunction Due to Mutation 

Disorder/Disease and Symptoms 

XYLT1 

Xylosyltransferase , catalyzes the first step in GAG biosynthesis 

Early chondrocyte maturation, ossification, leading to disproportionate dwarfism. 

Desbuquois dysplasia type 2,  

Baratela–Scott syndrome  

 

FAM20B 

Xylose kinase for GAG chain extension 

 

Immature, nonfunctional proteoglycans  

Lethal neonatal short limb dysplasia,  

Skeletal phenotypes with reduced cartilage proteoglycans  

B4GALT7 

Initiates GAG chain on the protein core  

Proteoglycans lacking GAG chains, disorganized matrix 

Progeroid Ehlers-Danlos syndrome 

B3GAT3 

Adds glucuronic acid to the linker region 

Reduced GAG chains, disorganized collagen  

Larsen-like syndrome, 

Severe skeletal and cardiovascular anomalies  

CHSY1 

Chondroitin sulfate synthase 1 

Disrupted bone morphogenesis, joint formation 

Temtamy preaxial brachydactyly syndrome, 

Limb patterning defects 

EXTL3 

N-acetylglucosaminyltransferase for  GAG binding 

Heparan sulfate synthesis 

Skeletal dysplasia,  

Hereditary multiple exostosis  

EXT1 EXT2 

Heparan sulfate polymerization in Golgi 

Loss of function, skeletal develpment 

Hereditary multiple exostosis 

 

SLC35D1 

Golgi transporter for UDP sugars 

Reduced GAG chain synthesis 

Schneckenbecken dysplasia  

SLC26A2 

Sulfate transporter  

Reduced cartilage proteoglycan sulfation  

Chondrodysplasias, 

Achondrogenesis, 

Diastrophic dysplasia 

BGN 

Biglycan, essential for bone and muscle  

Severe osteopenia, collagen fibril abnormalities  

Early onset of osteoporosis, disc degeneration 

DCN 

Decorin, regulates collagen fibril formation  

Fragile skin and tendons  

Irregular collagen fibrils, skin fragility 

GORAB 

Golgi protein recycling  

Disrupted proteoglycan synthesis, collagen organization 

Gerodermia osteodysplastica, 

Extreme bone fragility 

 

Conclusions 

Current therapeutic interventions for skeletal and connective tissue disorders largely focus on symptomatic management, such as orthopedic surgery and physiotherapy (Paganini et al., 2019). Understanding the genetic basis of these disorders enhances our insight into critical design features of biomaterials for skeletal repair. One promising avenue is the use of carbohydrate-based scaffolds for tissue engineering. These materials structurally mimic GAGs and have shown potential for bone regeneration. For example, a novel hyper-crosslinked carbohydrate polymer demonstrated efficacy in repairing bone defects in vivo. To learn more, refer to “Hyper-Crosslinked Carbohydrate Polymer for Repair of Critical-Sized Bone Defects” (Koleva et al., 2019)

By elucidating the intricate connections between genetic mutations and skeletal disorders, this post highlights the critical role of proteoglycans in bone development. With this knowledge, potential avenues for advanced therapeutic interventions offer hope for more effective bone and cartilage repair and treatment in the future. 

 

References: 

Chan, W. L., Steiner, M., Witkos, T., Egerer, J., Busse, B., Mizumoto, S., Pestka, J. M., Zhang, H., Hausser, I., Khayal, L. A., Ott, C.-E., Kolanczyk, M., Willie, B., Schinke, T., Paganini, C., Rossi, A., Sugahara, K., Amling, M., Knaus, P., … Kornak, U. (2018). Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLOS Genetics, 14(3), e1007242. https://doi.org/10.1371/journal.pgen.1007242 


Koleva, P. M., Keefer, J. H., Ayala, A. M., Lorenzo, I., Han, C. E., Pham, K., Ralston, S. E., Kim, K. D., & Lee, C. C. (2019). Hyper-Crosslinked Carbohydrate Polymer for Repair of Critical-Sized Bone Defects. BioResearch Open Access, 8(1), 111–120. https://doi.org/10.1089/biores.2019.0021 


Paganini, C., Costantini, R., Superti‐Furga, A., & Rossi, A. (2019). Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: A panoramic view. The FEBS Journal, 286(15), 3008–3032. https://doi.org/10.1111/febs.14984 

Sao, K., & Risbud, M. V. (2024). Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine, 21(1), 162–178. https://doi.org/10.14245/ns.2347342.671 


Taylan, F., & Mäkitie, O. (2016). Abnormal Proteoglycan Synthesis Due to Gene Defects Causes Skeletal Diseases with Overlapping Phenotypes. Hormone and Metabolic Research, 48(11), 745–754. https://doi.org/10.1055/s-0042-118706 


Wen, J., Xiao, J., Rahdar, M., Choudhury, B. P., Cui, J., Taylor, G. S., Esko, J. D., & Dixon, J. E. (2014). Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proceedings of the National Academy of Sciences, 111(44), 15723–15728. https://doi.org/10.1073/pnas.1417993111 

10 views0 comments

Comments


bottom of page